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概要
薬物動態学は，投与された薬物が体内で吸収・分布・代謝・排泄され，生体内から除去される
までの過程を数理的に扱う学問である．薬物濃度の時間変化は微分方程式を用いた薬物動態モデ
ルによって記述され，投与後の濃度推移の予測や適切な用法・用量設計に利用される．本研究で
は，代表的な薬物動態モデルの一つである 2-コンパートメントモデル [2], [3] を対象とする．生
物学のシステムにおける薬物反応は，外部からの入力や刺激に対して必ずしも即座に生じるので
はなく，薬物の動きには遅延 τ を伴う移動が存在することを考え，時間遅れの方程式を用いた薬
物動態の数理モデルを考察し，平衡点やその安定性を考える．

1 導入
1.1 ホップ分岐
ホップ分岐とはパラメータを含む連立微分方程式において，パラメータの値を変化させたときに周

期解が出現する分岐の一種である [1]．連立微分方程式が平衡点をもつ場合，パラメータの値が変化
するにつれて，その平衡点は安定性を失う．平衡点が漸近安定であるとき，平衡点のまわりの線形化
行列の固有値は左半平面に属する．具体的には，すべての固有値は負の実数であるか，または，実部
が負の複素数である．ホップ分岐は，この平衡点の安定性が失われる臨界点において，線形化行列の
固有値が虚軸を横断することによって特徴づけられる.

1.2 薬物動態モデル
図 1に示す 2-コンパートメントモデル [2]，[3]は，薬物の体内動態を記述しており，コンパートメ

ント X を中心に，周辺のコンパートメント Z（投与部位）および Y（周辺組織）との間で薬物の移
動が行われる構造になっている．各コンパートメントの役割は以下の通りである：

• X:中央コンパートメント．血中濃度を表し，薬物が代謝・排泄されたり，他のコンパートメ
ントに分配される．

• Y :末梢コンパートメント．組織などを表し，X との間で薬物が出入りする．
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図 1: 2-コンパートメントモデル

• Z:投与された薬物の起点（例：消化管や注射部位）．ここから X への薬物が吸収される．

本研究では薬物の動きには遅延 τ を伴う移動が存在することを考える．これは生理的な吸収・分布の
遅れを表現している．各種パラメータは正である．また，定数は以下のように定義される：

• BA:投与された薬物が体内で吸収され全循環系に到達する割合 (Bioavailability，生物学的利
用率)

• V :分布容積
• a:中枢から末梢への分布移行速度定数
• b:末梢から中枢への分布移行速度定数
• c:消化管から血中への吸収速度定数
• f :血中 (中枢)から体外へ薬物が除去される排泄速度定数

この構造に基づいて，以下のような連立微分方程式が導出される：

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以上より平衡点 (X,Y, Z) = (0, 0, 0)を得る．

2 主定理
連立微分方程式 (1)において，以下の定理が成り立つ．

定理 2.1 τ1 = τ2 = τのとき，次を満たすτ∗が存在する．
0 ≤ τ < τ∗ ならば (1)の平衡点 (0, 0, 0)は漸近安定であり，τ = τ∗ でホップ分岐する．

定理 2.2 τ1 = 0, τ2 = τ ̸= 0のとき，次を満たす τ∗∗ が存在する．
0 ≤ τ < τ∗∗ ならば (1) の平衡点 (0, 0, 0) は漸近安定であり，とくに，2(a + f)2 − ab ≥ 0 のとき
τ = τ∗∗ でホップ分岐する．



定理 2.3 τ1 = τ ̸= 0, τ2=0のとき，次を満たす τ∗∗∗ が存在する．
0 ≤ τ < τ∗∗∗ ならば (1) の平衡点は (0, 0, 0) は漸近安定であり，とくに，b ≥ a のときτ = τ∗∗∗ で
ホップ分岐する．

3 主定理の証明概略
3.1 主定理 2.1の証明概略
この節で，主定理 2.1 について証明を与える．主定理 2.2，2.3 についても同様に導くことができ

る．まず (1)に対応する線形化問題の固有値と平衡点 (0, 0, 0)の安定性を求める．(1)は以下のよう
に表せる．
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でなければならない．そこでこれを解き，整理すると

(λ+ c){(λ+ (a+ f)e−λτ )(λ+ be−λτ )− ab} = 0

となり，

λ+ c = 0 または λ2 + (a+ b+ f)λe−λτ + (a+ f)be−2λτ − ab = 0

を得る．λ+ c = 0からは λ = −cが導かれるので平衡点の安定性を考えるためには，

λ2 + (a+ b+ f)λe−λτ + (a+ f)be−2λτ − ab = 0 (2)

を考えれば十分である．



はじめに，τ = 0のときを考える．τ = 0のとき，(2)に代入して，

λ2 + (a+ b+ f)λ+ bf = 0 (3)

を得る．a+ b+ f > 0, bf > 0であるから固有値 λの実部は負となり，(1)の平衡点 (0, 0, 0)は漸近
安定であることがわかる．
次に τ ̸= 0において固有値と安定性を調べる．τ = τ∗ のとき λ = iw（ただし，w > 0とする）と

なる固有値をもつとする．そこで，(2)に λ = iw を代入して，虚数解を考える．

− w2 + (a+ b+ f)e−iwτ iw + (a+ f)be−2iwτ − ab = 0

オイラーの公式を用いて式を整理し，実部・虚部を考えると{
w2 + ab = (a+ b+ f)w sinwτ + (a+ f)b cos 2wτ

0 = (a+ b+ f)w coswτ − (a+ f)b sin 2wτ
(4)

を得る．
ここで，{(a+ b+ f)w − 2(a+ f)b sinwτ} coswτ = 0より coswτ ̸= 0，coswτ = 0に場合分け
して考える．
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であるから，
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(5)

を得る．また，(4)，(5)より式を整理して w2 = bf を得る．bf > 0より w > 0となる w は
存在することがわかる．よって w =
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を得る．
(II) coswτ = 0，つまり wτ = π

2 + nπ のとき，sinwτ = ±1
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を得る．したがって
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となることがわかる．



以上から固有値が虚軸にのるとしたら，τ が (6)または，(7)を満たすとき，λ = iw となることが分
かった．
次に τ の値が (6)または (7)前後のときの λの様子を調べるために d

dτ λ(τ)を調べる．ただし，τ

が (7)を満たすときは，τ+ < τ− であるから τ = τ+ 前後について考察する．
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を得る．ここで，λ = iw を代入して式を整理すると
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を得る．ここから，coswτ ̸= 0，coswτ = 0に場合分けして解析を進める．
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のとき (8)に代入して式を整理すると
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を得る．Re
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> 0 より，(1) の平衡点 (0,0,0) は τ が (6) でホップ分岐することがわ
かる．

(II) coswτ = 0のとき，cos 2wτ = −1，sinwτ = 1より (8)に代入して
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=
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を得る．ここで (4)より，w2 = (a+ b+ f)w − b(2a+ f)を代入して式を整理すると
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となり，また，異なる 2つの解をもつので判別式 D > 0より

D = (a− b+ f)2 − 4ab > 0 (10)



(9)，(10)より，τ = τ+ のとき，w =
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√
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よって，Re 1
d
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の正負判定より，(1)の平衡点 (0,0,0)は τ = τ∗ の前後でホップ分岐する
ことが分かる．

3.2 主定理 2.2の証明概略
定理 2.1と同様にして定理 2.2，2.3の証明を導くことができる．

τ1 = 0, τ2 = τ ̸= 0のとき，以下の連立微分方程式が得られる．
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(11)より τ = τ∗∗ で固有値 λ = iw をもつと仮定すると
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(12)が正になるとき，つまり {w2 + (a+ f)2}2 + ab{2(a+ f)2 − ab} > 0のとき，平衡点 (0,0,0)

は τ = τ∗∗ でホップ分岐することがわかる．とくに，2(a+ f)2 − ab > 0のときは，ホップ分岐する
ことがわかる．

3.3 主定理 2.3の証明概略
τ1 = τ ̸= 0, τ2 = 0のとき，以下の連立方程式が得られる．
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(13)より τ = τ∗∗∗ で固有値 λ = iw をもつと仮定すると

w∗∗∗ =
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√
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を得る．Re 1
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> 0 つまり w4 + 2b2w2 + b2(b2 − a2 + 2ab) > 0 のとき，平衡点 (0, 0, 0) は
τ = τ∗∗∗ でホップ分岐する．とくに，b > aであれば，τ = τ∗∗∗ でホップ分岐することがわかる．

4 定理 2.1のシミュレーション
MATLABを用いて定理 2.1で証明したことの確認としてシミュレーションを行う．各パラメータ
を以下のように定める．参考文献 [4], [5]をもとに合成ヒト Cペプチドの静脈内投与とそれに伴う 2

コンパートメントモデルで使われていたパラメータを一般的な範囲で設定した．

a = 0.06880, f = 0.05608, b = 0.09962, V = 1.73029, BA = 1, c = 1.

(I)のとき，(6)の τ = 1√
bf

arcsin{ (a+b+f)
√
bf

2(a+f)b }より，τ∗ = 9.9027になる．図 2より平衡点 (0, 0, 0)

は安定していることがわかる．

図 2: τ = 9.9027のとき



図 3: τ = 8.5000のとき

τ− = 8.5000 < τ∗ のとき，
(X,Y, Z) = (0, 0, 0) に収束していき，漸近

安定になる様子がわかる．

図 4: τ = 11.0000のとき

τ+ = 11.0000 > τ∗ のとき，X(t), Y (t) が発
散していく様子がわかる．

以上より定理 2.1の主張がシミュレーションで確認できる．

5 生物学的考察
本研究では，2-コンパートメントモデルに吸収および分布の遅延 τ を導入した遅延微分方程式を
構築し，その平衡点の安定性およびホップ分岐条件を明らかにした．遅延時間 (τ の値) が小さい
場合には薬物濃度は単調減少して平衡点 (X,Y, Z) ＝ (0, 0, 0) に漸近安定する．このとき薬物は一
定の速度で体内から除去され，血中濃度および組織濃度は時間とともに単調に減少する，典型的な
薬物動態と整合している．一方で，遅延が一定の臨界値を超えると固有値が虚軸を横断し，平衡点
(X,Y, Z)＝ (0, 0, 0) が不安定化して周期解が出現すること (ホップ分岐)が示された．吸収や分布に
時間がかかりすぎると，血中濃度や組織濃度が一定に向かわず，むしろ波のように上下を繰り返すこ
とが明らかになった．薬物の吸収や組織からの戻りが遅れることで，血中濃度のタイミングがずれ，
過剰な上昇や再上昇が起こる状態であるとわかる．さらに，定理 2.3 では b ≥ a の条件下で平衡点
(0, 0, 0)が不安定になる場合を想定してシミュレーションを実施したが，実際の薬物動態パラメータ
では a ≥ bとされる例も少なくない．この点は，本モデルにおける安定性の生物学的妥当性を検討す
るうえで重要であり，薬物特性や投与経路による aと bの関係の整理と再評価が今後の研究課題とし
て挙げられる．
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